Date of Award

Spring 5-4-2020

Document Type

Thesis

Degree Name

Bachelor of Arts

Department

Physics

First Advisor

Madeline Wade

Second Advisor

Aaron Viets

Abstract

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is an instrument designed to directly detect the presence of gravitational waves passing through the Earth. This project is concerned with the relationship between different steps in LIGO data analysis – specifically, the effects of LIGO calibration uncertainty on astrophysical results. We have found that nominal calibration uncertainty does not bias astrophysical analysis on single events. We have also found that when the systematic calibration uncertainty is artificially increased it does bias single event astrophysical analysis significantly. Another goal of this project was to quantify the effect of statistical and systematic calibration uncertainty on searches for gravitational waves from compact binary systems. For a gstlal binary black hole search, we found that calibration uncertainty caused a minor reduction in search sensitivity at false alarm rates for which the LSC could call a gravitational wave candidate a real event. Although the reduction in search sensitivity due to calibration uncertainty is small, this result does warrant follow-up investigations to determine the scale of the decrease in search sensitivity across different astrophysical populations.

Rights Statement

All rights reserved. This copy is provided to the Kenyon Community solely for individual academic use. For any other use, please contact the copyright holder for permission.

Share

COinS