2007

Index of Refraction Using Total Internal Reflection

Tom Greenslade
Kenyon College, greenslade@kenyon.edu

Follow this and additional works at: http://digital.kenyon.edu/physics_publications
Part of the Physics Commons

Recommended Citation
"Index of Refraction Using Total Internal Reflection", The Physics Teacher, 45, 420 (2007)

This Article is brought to you for free and open access by the Physics at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact noltj@kenyon.edu.
Index of Refraction Using Total Internal Reflection
Thomas B. Greenslade Jr.

Citation: The Physics Teacher 45, 420 (2007); doi: 10.1119/1.2783149
View online: http://dx.doi.org/10.1119/1.2783149
View Table of Contents: http://scitation.aip.org/content/aapt/journal/tpt/45/7?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Index of Refraction Measurements Using a Laser Distance Meter
Phys. Teach. 52, 167 (2014); 10.1119/1.4865521

Analysis of light scattered by a capillary to measure a liquid’s index of refraction
Am. J. Phys. 80, 688 (2012); 10.1119/1.4729607

A simple demonstration of frustrated total internal reflection
Am. J. Phys. 76, 746 (2008); 10.1119/1.2904473

Visualization of the complex refractive index of a conductor by frustrated total internal reflection

Refractive index measurement using total internal reflection
Am. J. Phys. 73, 611 (2005); 10.1119/1.1866099
Here is a quick way to measure the index of refraction of water using the phenomenon of total internal reflection.

A cell is constructed using two thin glass plates held a millimeter or two apart by a thin strip of window glazing compound run around their edges, forming, in effect, a tiny thermo pane window. A cross section is shown in Fig. 1. The sandwich is submerged in a small fish tank filled with water and suspended from a shaft with a protractor attached to it to measure angle θ_1.

A laser beam is directed toward the cell, and at a certain angle of the plates, relative to the light beam, the beam is abruptly cut off. Snell's law at the first interface is $n_1 \sin \theta_1 = n_2 \sin \theta_2$, and at the second interface is $n_2 \sin \theta_2 = n_3 \sin \theta_3$, showing that $n_1 \sin \theta_1 = n_3 \sin \theta_3$. When θ_3 is 90° and $n_3 = 1.000$, we have the standard condition for total internal reflection: $n_1 = 1/\sin \theta_C$, where θ_C is now the angle between the incoming beam and the normal to the plates.

This was used for many years in the introductory laboratory at Kenyon College in a potpourri experiment on the reflection and refraction of light. At the time we thought that we had invented a new technique, but later I found it in Preston¹ and traced it to a publication in 1875! I suspect that others have independently invented this experiment, but I have found no recent published record of it.

Reference

PACS codes: 01.50.Pa, 42.00.00

Thomas B. Greenslade Jr. is professor emeritus in the physics department at Kenyon and a frequent author for The Physics Teacher.

Physics Department, Kenyon College, Gambier, OH 43022; greenslade@kenyon.edu