Fluctuating Asymmetry as an Indicator of Reproductive Effort in the Leach’s Storm-Petrel (Oceanodroma leucorhoa)

Lauren Elisabeth Michael
Kenyon College, michaelj@kenyon.edu

Robert A. Mauck
mauckr@kenyon.edu

Follow this and additional works at: http://digital.kenyon.edu/summerscienceprogram

Part of the Biology Commons

Recommended Citation
http://digital.kenyon.edu/summerscienceprogram/4

This Article is brought to you for free and open access by the Summer Student Research Scholarship at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Kenyon Summer Science Scholars Program by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact noltj@kenyon.edu.
Fluctuating Asymmetry as an Indicator of Reproductive Effort in the Leach’s Storm-Petrel (Oceanodroma leucorhoa)

L. E. Michael ’17, R. A. Mauck, Department of Biology, Kenyon College

Background

- Fluctuating asymmetry (FA) is defined as an organism’s deviation from bilateral symmetry in a morphological trait, usually as a consequence of an environmental stressor (Galban 2011, De Coster et al. 2013).
- Fluctuating Asymmetry has been used as a phenotypic measurement of developmental instability (Swaddle 2003).
- Parents balance the energetic investment in young against their own condition. Because significant health deterioration can decrease their chances of survival and future reproduction (Erikstad et al. 1997).
- The Leach’s Storm-Petrel (LHSP) is a pelagic seabird that forms long-term pair bonds and lays one egg per year for up to 38 years.
- We measured FA in a population of Leach’s storm-petrels at the Bowdoin Scientific Station that has been studied continuously since 1953.

Do storm-petrels show FA and can we measure it?

Inducing Feather Growth
- Plucking a feather induces growth of a replacement feather
- Rate of growth shown reflects nutritional condition while grown
- We plucked right and left rectrices from 35 breeding individuals.
- This allowed us to:
 - compare our measurements of feathers in situ against the same feather ex situ.
 - assess our ability to accurately measure in situ morphology.

Measuring Feathers in situ
- With a wing ruler, we measured both original and induced right and left 5th rectrices.

Measuring Feathers ex situ
- Feathers measured in situ accurately reflect actual feather length

![Image 1](link)

Figure 1. Ex situ measurements were correlated with in situ measurements. The red line represents measurements for the right side of the bird; the blue line represents measurements for the left side of the bird. Correlation test, r(red) = 0.89, df = 33, p < 0.01; r(blue) = 0.89, df = 33, p < 0.01.

Weak evidence that FA reflects reproductive effort in storm-petrels

Assumption: FA of induced feathers reflect stress from molt (immediately following previous breeding season).
- FA of original feathers reflect stress since original feather was plucked.

Does FA in storm-petrels reflect reproductive effort?

Measuring FA in the field
- Asymmetry measurements were taken on 91 storm-petrels.
 - The induced fifth rectrix (tail feather) was measured on the birds from which an original rectrix was plucked.
 - Measurements were taken on left and right wing length, tarsus length, and fifth rectrix length in situ.
- Assumption: FA of original feathers reflect stress during molt (immediately following previous breeding season).
- Assumption: FA of induced feathers reflect stress since original feather was plucked.

Measures of Reproductive Effort
- Assumption: egg size positively correlated with energy allocated to the egg
- Assumption: egg lay date negatively correlated with nutritional condition entering breeding season.
- Assumption: Age and pair bond length may affect energetic demands of incubation due to benefits of experience.

Predictions
- If FA reflects Reproductive Effort, then FA will be:
 - Correlated (+) with egg size and lay date.
 - Correlated (-) with pair bond length and years of site presence.

![Image 2](link)

Figure 2. Distribution of asymmetry values of (A) raw induced tail feather measurements and (B) the absolute value of original tail feather.

Acknowledgements: First and foremost, I would like to thank Professor Robert Mauck for giving me this incredible opportunity and supporting me every step of the way. I would also like to thank Liam Taylor for helping me keep a sense of humor during these long days in the pouring rain, and Sarah Adrianowycz for all of her help with data collection. Finally, I would like to thank the Kenyon Biology Department and Kenyon Summer Science for funding my research and supporting me throughout this process.

Literature Cited: