
Template ID: assessingslate  Size: 48x36

Richard Anthony Álvarez
IPHS 484 Senior Seminar  (Spring 2024) Prof Leibowitz, Kenyon College

A Retrieval-Augmented Film Recommendation System

Conclusion

References

Abstract

Retrieval-Augmented Generation

Implementation
This project introduces a Retrieval-Augmented Film 
Recommendation System, developed as a Command Line 
Interface (CLI). It leverages advanced semantic search 
techniques, combined with retrieval-augmented generation, 
to deliver personalized movie recommendations. The system 
accesses extensive film metadata from two remote API 
sources, enriching the quality and accuracy of its suggestions. 
Tested across various movie preference profiles, the system 
adeptly adjusts its recommendations to suit individual tastes, 
showcasing its adaptability and the effectiveness of 
retrieval-augmented technology in streamlining user 
interactions with digital entertainment platforms.

The Retrieval-Augmented Film Recommendation System 
was implemented using Node.js, a powerful and flexible 
runtime environment that excels in handling asynchronous 
operations and network requests, which are crucial for 
interacting with external APIs. The architecture of the CLI 
tool is designed to maximize the efficiency of data retrieval 
and processing through modular components, each 
responsible for distinct aspects of the recommendation 
pipeline.

API Integration: The system interacts with the OMDb and 
TMDb APIs to fetch detailed movie metadata. This is 
accomplished through bespoke modules (omdb.js and 
tmdb.js), which handle HTTP requests and responses. 
Node.js's fetch API is used to asynchronously retrieve data, 
ensuring the system remains responsive.

Data Processing: Once data is retrieved, it is processed and 
aggregated. The aggregateMovieData function merges data 
from both APIs, enhancing the richness of the movie profiles 
used for making recommendations.

User Interaction: User inputs are handled via the inquirer 
library, which facilitates CLI interactions. Users can input 
their movie preferences, which are then used to refine 
searches and tailor recommendations.

Recommendation Logic: The core recommendation logic is 
powered by LangChain’s OpenAI integration. This involves 
generating descriptive analyses of user preferences and 
querying the TMDb API based on these insights. The system 
utilizes OpenAI's GPT models to dynamically generate 
queries that reflect user preferences, significantly improving 
the relevance of the movie suggestions.

This approach not only leverages Node.js's strengths in 
handling I/O-bound tasks but also integrates advanced AI and 
machine learning techniques to provide a highly responsive 
and intuitive user experience.

Retrieval-Augmented Generation (RAG) combines the 
capabilities of Large Language Models (LLMs) with the 
precision of information retrieval to enhance recommendation 
systems. Our film recommendation system partially adopts 
this approach by integrating a language model with a selective 
retrieval component. Rather than searching through an 
exhaustive database, our system strategically retrieves 
metadata from selected films based on initial user inputs, such 
as preferences for specific film genres or styles. This 
metadata, sourced from two external APIs, includes critical 
details like movie descriptions, ratings, genres, and user 
reviews.

The selected data then serves as contextual input for the 
language model, which is tasked with generating personalized 
recommendations. The language model, trained on a diverse 
range of movie-related datasets, synthesizes this information 
to grasp nuanced user preferences and suggest films that 
closely match the specified criteria. This targeted approach not 
only boosts the relevance of the recommendations but also 
ensures that the suggestions are insightful and contextually 
appropriate.

Currently, our system employs a one-shot prompting method 
with the language model, using metadata from specifically 
chosen films rather than aggregating data from a vast dataset. 
This adherence to a RAG philosophy lays the groundwork for 
future enhancements. As development progresses, the system 
could evolve to dynamically fetch and utilize broader data 
points from extensive databases in real-time, bridging the gap 
between traditional content-based filtering and the nuanced 
demands of personalized recommendation systems. This 
future potential makes our approach particularly suited for 
advancing in the dynamic field of digital entertainment.

The Graduate (1967)
Y Tu Mama Tambien (1999)

Fear and Loathing in Las Vegas (1999)
Theorem (1968)

El Mariachi (1992)
Florida Project (2017)
Amores Perros (2000)
Barry Lyndon (1975)

1. Ingest a list of favorite films

Movie metadata 

OMDb + TMDb
JSON

LLM/LM
Local fine tuned 

model

Prompt 
Act as a professional film recommender. 
In one-paragraph, precisely describe the taste and 
commonalities of the movies contained in 
user-preferences.json. What are some recurring 
patterns? 
What are the common genres, writers, actors, 
locations, themes, and/or styles? 

Example
The film preferences indicate a diverse taste with a focus on drama, 
romance, and a blend of genres including comedy, mystery, thriller, and 
action. Recurring themes involve complex human emotions, 
relationships, and societal critiques, often explored through the lens of 
personal and cultural identity. There's a notable preference for films that 
provide deep narrative experiences, including character-driven stories 
and explorations of human nature against various backdrops, from the 
intimate settings of family dynamics to broader societal contexts. Films 
are from a range of countries, indicating a preference for both English 
and non-English language films, showcasing an appreciation for global 
cinema. The selection includes critically acclaimed works known for 
their storytelling, direction, and performances, suggesting a taste for 
films that offer both intellectual engagement and emotional resonance.

User Preference 
Description

One paragraph of text

3. Create a description of user preferences

Search TMDb API 
Request

For each of the user’s favorite films 
extract the ID

GET https://api.themoviedb.org/3/search/movie

Get TMDb API Request
Get the top level details of a movie by ID

GET https://api.themoviedb.org/3/movie/37247

2. Create document of movie metadata

Get OMDb API Request
By TMDb ID get more relevant metadata

GET http://www.omdbapi.com/?i=

4. Discover movies by generating a tailored API request using 
LangChain

API Specification
TMDb OpenAPI string 
specifying fields for the 
discover endpoint

Prompt
Write a json object that can 
be parsed into TMDb API 
Movie discovery request 
with filters based on the the 
user preference 
description….

LLM
Powerful cloud-based 

model

Discover TMDb API 
Request

Find movies using over 30 filters and sort 
options.

User Preferences
A list of the favorite 
films and a paragraph 
description of the user’s 
“taste”.

(Figure 1. Large Language Model-Based Film Recommendation System Architecture)

(Figure 2. Demonstration of Application)

The Retrieval-Augmented Film Recommendation System has 
demonstrated its ability to provide novel and relevant insights 
into personalized film recommendations. While the system 
offers some transparency, the explainability of its processes 
and decisions could benefit from further testing and 
enhancement. This would improve user trust and satisfaction 
by making the recommendation logic more accessible and 
understandable.

Looking ahead, there are plans to evolve the system into a 
full Retrieval-Augmented Generation (RAG) model by 
establishing a proprietary database that indexes 
comprehensive film metadata. This will enable the system to 
perform more in-depth searches and generate richer user 
profile descriptions, leading to more accurate and 
personalized film suggestions. 

The implementation of this complete RAG system will allow 
for more dynamic interactions with the data, significantly 
enhancing the system's capability to meet the nuanced 
preferences of its users.

Alvarez, R. (2024). Retrieval-Augmented Film Recommendation System. GitHub 

Repository. Available at: 

https://github.com/raulduk3/language-model-driven-film-recommendation

OpenAI. (n.d.). OpenAI API. Available at: https://openai.com/api/

The Movie Database (TMDb). (n.d.). TMDb API Documentation. Available at: 

https://developers.themoviedb.org/3/getting-started/introduction

Internet Movie Database (IMDb). (n.d.). OMDb API. Available at: 

http://www.omdbapi.com/

LangChain. (n.d.). LangChain Library. Available at: https://langchain.com/

Node.js Foundation. (n.d.). Node.js Official Documentation. Available at: 

https://nodejs.org/en/docs/

Inquirer.js. (n.d.). Inquirer GitHub Repository. Available at: 

https://github.com/SBoudrias/Inquirer.js

User Preference 
Description

Raw Text

User Preference Description
Common genres: Drama, Romance, Comedy, Crime, Action, 
Thriller, Western, Mystery
Release date: 1967-2001
Runtime: 81-106 minutes\
Spoken languages: English, Spanish, Italian
Vote average: 6.7-7.6
Box office: $0-$33,600,000
Rating: PG-13, R

TMDb Discover API URL
https://api.themoviedb.org/3/discover/movie?include_adult=false
&language=en-US&sort_by=vote_average.desc&primary_releas
e_date.gte=1967-01-01&primary_release_date.lte=2001-12-31&
vote_average.gte=6.7&vote_average.lte=7.6&with_genres=18|1
0749|35|80|28|53|9648|37&with_runtime.gte=81&with_runtime.lt
e=106&with_original_language=en|es|it&without_watch_provide
rs=8|9|10&region=US

Suggested Film
· No Sympathy for the Devil
· The Hunted Lady
· Eyes of the Prey
· The Belle of Amherst
· The Walking Stick
· No Picnic
· Love God
· A Voyage Round My Father
· Billy Elliot
· Tres lancheros muy picudos
· Toy Story 2
· Ferris Bueller's Day Off
· Harold and Maude
· Man Facing Southeast
· Skylark
· Cria!

Example Film Recommendation


