Title

Functional differences between natural and restored wetlands in the Glaciated Interior Plains

Document Type

Article

Publication Date

2014

Abstract

We measured soil properties, carbon and nutrient (nitrogen, phosphorus) pools, ambient and potential denitrification, and phosphorus sorption index (PSI) in natural depressional wetlands and depressional wetlands restored through the U.S. Department of Agriculture (USDA) Wetland Reserve Program. We measured the same suite of variables in natural and USDA Conservation Reserve Program-restored riparian buffers and in agricultural fields adjacent to both systems to determine the degree to which ecosystem services are being provided through restoration in different hydrogeomorphic settings. Organic carbon and nutrient pools, PSI, and denitrification were greater in natural than in 5- to 10-yr-old restored depressional wetlands. In riparian soils, carbon and nutrient pools, PSI, and denitrification were comparable between restored and natural systems, suggesting that these services develop quickly after restoration. Restored depressional wetlands had lower soil organic C, N, and P relative to agricultural soils, whereas the opposite trend was observed in restored riparian soils. Four-year-old restored riparian buffers achieved equivalence to natural riparian buffers within 4 yr, whereas restored depressional wetlands took longer to provide these ecosystem services (i.e., PSI, denitrification, C storage) at levels comparable to natural wetlands. Restored depressional wetlands and riparian buffers provide ecosystem services lost through previous conversion to agriculture throughout the Midwest; however, the development of these services depends on hydrodynamics (pulsed versus nonpulsed), parent material, soil texture (sand, clay), and disturbance regime (prescribed fire) of the site. As restoration continues throughout the region, C sequestration and nutrient removal in these systems is expected to increase water quality at the local and regional levels.

Journal

Journal of Environmental Quality

Volume

43

First Page

409

Last Page

417